반응형


Section Header


각 Section 의 속성(property)을 정의한 것이 Section Header 입니다.

section header 구조체를 보기 전에 한번 생각을 해보겠습니다.

앞서 PE 파일은 code, data, resource 등을 각각의 section 으로 나눠서 저장한다고 설명드렸습니다.
분명 PE 파일 포멧을 설계한 사람들은 어떤 장점이 있기 때문에 그랬을 겁니다.

PE 파일을 여러개의 section 구조로 만들었을때 (제가 생각하는) 장점은 바로 프로그램의 안정성입니다.

code 와 data 가 하나의 섹션으로 되어 있고 서로 뒤죽박죽 섞여 있다면, (실제로 구현이 가능하긴 합니다.)
그 복잡한은 무시하고라도 안정성에 문제가 생길 수 있습니다.

가령 문자열 data 에 값을 쓰다가 어떤 이유로 overflow 가 발생(버퍼 크기를 초과해서 입력) 했을때
바로 다음의 code (명령어) 를 그대로 덮어써버릴 것입니다. 프로그램은 그대로 뻗어 버리겠죠.

즉, code/data/resource 마다 각각의 성격(특징, 엑세스 권한)이 틀리다는 것을 알게 된 것입니다.

  • code - 실행, 읽기 권한
  • data - 비실행, 읽기, 쓰기 권한
  • resource - 비실행, 읽기 권한


그래서 PE 파일 포멧 설계자들은 비슷한 성격의 자료를 section 이라고 이름 붙인 곳에 모아두기로 결정하였고,
각각의 section 의 속성을 기술할 section header 가 필요하게 된 것입니다.
(section 의 속성에는 file/memory 에서의 시작위치, 크기, 엑세스 권한 등이 있어야 겠지요.)

이제 section header 가 무슨 역할을 하는지 이해 되셨나요?



IMAGE_SECTION_HEADER


section header 는 각 section 별 IMAGE_SECTION_HEADER 구조체의 배열로 되어있습니다. 

#define IMAGE_SIZEOF_SHORT_NAME              8

typedef struct _IMAGE_SECTION_HEADER {
    BYTE    Name[IMAGE_SIZEOF_SHORT_NAME];
    union {
            DWORD   PhysicalAddress;
            DWORD   VirtualSize;
    } Misc;
    DWORD   VirtualAddress;
    DWORD   SizeOfRawData;
    DWORD   PointerToRawData;

    DWORD   PointerToRelocations;
    DWORD   PointerToLinenumbers;
    WORD    NumberOfRelocations;
    WORD    NumberOfLinenumbers;
    DWORD   Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

* 출처 : Microsoft 의 Visual C++ 에서 제공하는 winnt.h


IMAGE_SECTION_HEADER 구조체에서 알아야 할 중요 멤버는 아래와 같습니다. (나머지는 사용되지 않습니다.)

  • VirtualSize      : 메모리에서 섹션이 차지하는 크기
  • VirtualAddress   : 메모리에서 섹션의 시작 주소 (RVA)
  • SizeOfRawData    : 파일에서 섹션이 차지하는 크기
  • PointerToRawData : 파일에서 섹션의 시작 위치
  • Characteristics  : 섹션의 특징 (bit OR)


VirtualAddress 와 PointerToRawData 의 값은 아무 값이나 가질 수 없고,
각각 (IMAGE_OPTIONAL_HEADER32 에 정의된) SectionAlignment 와 FileAlignment 에 맞게 결정됩니다.

VirtualSize 와 SizeOfRawData 는 일반적으로 서로 틀린값을 가집니다.
즉, 파일에서의 섹션 크기와 메모리에 로딩된 섹션의 크기는 틀리다는 얘기가 되는 거죠.

Characteristics 는 아래 값들의 조합(bit OR)으로 이루어 집니다.

#define IMAGE_SCN_CNT_CODE                   0x00000020  // Section contains code.
#define IMAGE_SCN_CNT_INITIALIZED_DATA       0x00000040  // Section contains initialized data.
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA     0x00000080  // Section contains uninitialized data.
#define IMAGE_SCN_MEM_EXECUTE                0x20000000  // Section is executable.
#define IMAGE_SCN_MEM_READ                   0x40000000  // Section is readable.
#define IMAGE_SCN_MEM_WRITE                  0x80000000  // Section is writeable.


마지막으로 Name 항목에 대해서 얘기해보겠습니다.

Name 멤버는 C 언어의 문자열처럼 NULL 로 끝나지 않습니다. 또한 ASCII 값만 와야한다는 제한도 없습니다.
PE 스펙에는 섹션 Name 에 대한 어떠한 명시적인 규칙이 없기 때문에 어떠한 값을 넣어도 되고 심지어 NULL 로 채워도 됩니다.

또한 개발 도구에 따라서 섹션 이름/갯수 등이 달라집니다.

따라서 섹션의 Name 은 그냥 참고용 일뿐 어떤 정보로써 활용하기에는 100% 장담할 수 없습니다.
(데이타 섹션 이름을 ".code" 로 해도 되거든요.)


자 그러면 실제 notepad.exe 의 Section Header 배열을 살펴보죠. (총 3 개의 섹션이 있습니다.)


구조체 멤버별로 살펴보면 아래와 같습니다.

[ IMAGE_SECTION_HEADER ]

 offset   value   description
-------------------------------------------------------------------------------
000001D8 2E746578 Name (.text)
000001DC 74000000
000001E0 00007748 virtual size
000001E4 00001000 RVA
000001E8 00007800 size of raw data
000001EC 00000400 offset to raw data
000001F0 00000000 offset to relocations
000001F4 00000000 offset to line numbers
000001F8     0000 number of relocations
000001FA     0000 number of line numbers
000001FC 60000020 characteristics
                    IMAGE_SCN_CNT_CODE
                    IMAGE_SCN_MEM_EXECUTE
                    IMAGE_SCN_MEM_READ

00000200 2E646174 Name (.data)
00000204 61000000
00000208 00001BA8 virtual size
0000020C 00009000 RVA
00000210 00000800 size of raw data
00000214 00007C00 offset to raw data
00000218 00000000 offset to relocations
0000021C 00000000 offset to line numbers
00000220     0000 number of relocations
00000222     0000 number of line numbers
00000224 C0000040 characteristics
                    IMAGE_SCN_CNT_INITIALIZED_DATA
                    IMAGE_SCN_MEM_READ
                    IMAGE_SCN_MEM_WRITE

00000228 2E727372 Name (.rsrc)
0000022C 63000000
00000230 00008304 virtual size
00000234 0000B000 RVA
00000238 00008400 size of raw data
0000023C 00008400 offset to raw data
00000240 00000000 offset to relocations
00000244 00000000 offset to line numbers
00000248     0000 number of relocations
0000024A     0000 number of line numbers
0000024C 40000040 characteristics
                             IMAGE_SCN_CNT_INITIALIZED_DATA
                             IMAGE_SCN_MEM_READ




RVA to RAW



Section Header 를 잘 이해하셨다면 이제부터는 PE 파일이 메모리에 로딩되었을때
각 섹션에서 메모리의 주소(RVA)와 파일 옵셋을 잘 매핑할 수 있어야 합니다.

이러한 매핑을 일반적으로 "RVA to RAW" 라고 부릅니다.
방법은 아래와 같습니다.

1) RVA 가 속해 있는 섹션을 찾습니다.
2) 간단한 비례식을 사용해서 파일 옵셋(RAW)을 계산합니다.

IMAGE_SECTION_HEADER 구조체에 의하면 비례식은 이렇습니다.

RAW - PointerToRawData = RVA - VirtualAddress
                   RAW = RVA - VirtualAddress + PointerToRawData


간단한 퀴즈를 내보겠습니다.
아래 그림은 notepad.exe 의 File 과 Memory 에서의 모습입니다.
각각 RVA 를 계산해 보세요. (계산기 calc.exe 를 Hex 모드로 세팅하시면 계산이 편합니다.)



Q1)  RVA = 5000h 일때 File Offset = ?
A1) 먼저 해당 RVA 값이 속해 있는 섹션을 찾아야 합니다.
      => RVA 5000h 는 첫번째 섹션(".text")에 속해있습니다. (ImageBase 01000000h 를 고려하세요.)

      비례식 사용
      => RAW = 5000h(RVA) - 1000h(VirtualAddress) + 400h(PointerToRawData) = 4400h

Q2) RVA = 13314h 일때 File Offset = ?
A2) 해당 RVA 값이 속해 있는 섹션을 찾습니다.
      => 세번째 섹션(".rsrc")에 속해있습니다.

      비례식 사용
      => RAW = 13314h(RVA) - B000h(VA) + 8400h(PointerToRawData) = 10714h

Q3) RVA = ABA8h 일때 File Offset = ?
A2) 해당 RVA 값이 속해 있는 섹션을 찾습니다.
      => 두번째 섹션(".data")에 속해있습니다.

      비례식 사용
      => RAW = ABA8h(RVA) - 9000h(VA) + 7C00h(PointerToRawData) = 97A8h (X)
      => 계산 결과로 RAW = 97A8h 가 나왔지만 이 옵셋은 세번째 섹션(".rsrc")에 속해 있습니다.
           RVA 는 두번째 섹션이고, RAW 는 세번째 섹션이라면 말이 안되지요.
           이 경우에 "해당 RVA(ABA8h)에 대한 RAW 값은 정의할 수 없다" 라고 해야 합니다.
           이런 이상한 결과가 나온 이유는 위 경우에 두번째 섹션의 VirtualSize 값이 SizeOfRawData 값 보다 크기 때문입니다.

PE 파일의 섹션에는 Q3) 의 경우와 같이 VirtualSize 와 SizeOfRawData 값이 서로 틀려서 벌어지는
이상하고 재미있는(?) 일들이 많이 있습니다. (앞으로 살펴보게 될 것입니다.)




이것으로 PE Header 의 기본 구조체들에 대한 설명을 마쳤습니다.

다음에는 PE Header 의 핵심인 IAT(Import Address Table), EAT(Export Address Table) 에 대해서 공부해 보겠습니다.

(continue)



반응형
반응형


Introduction


Windows 운영체제의 PE(Portable Executable) File Format 에 대해서 아주 상세히 공부해 보도록 하겠습니다.

PE format 을 공부하면서 Windows 운영체제의 가장 핵심적인 부분인
Process, Memory, DLL 등에 대한 내용을 같이 정리할 수 있습니다.



PE(Portable Executable) File Format


PE 파일의 종류는 아래와 같습니다.

  • 실행 파일 계열 : EXE, SCR
  • 라이브러리 계열 : DLL, OCX
  • 드라이버 계열 : SYS
  • 오브젝트 파일 계열 : OBJ

엄밀히 얘기하면 OBJ(오브젝트) 파일을 제외한 모든 파일들은 실행 가능한 파일 입니다.

DLL, SYS 파일등은 쉘(Explorer.exe) 에서 직접 실행 할 수는 없지만,
다른 형태의 방법(디버거, 서비스, 기타)을 이용하여 실행이 가능한 파일들입니다.

* PE 공식 스펙 에는 컴파일 결과물인 OBJ(오브젝트) 파일도 PE 파일로 간주합니다.
  하지만 OBJ 파일 자체로는 어떠한 형태의 실행도 불가능하므로 리버싱에서 관심을 가질 필요는 없습니다.


간단한 설명을 위해서 노트패드(notepad.exe) 파일을 hex editor 를 이용해서 열어보겠습니다.


<Fig. 1>

<Fig. 1> 은 notepad.exe 파일의 시작 부분이며, PE 파일의 헤더 (PE header) 부분입니다.

바로 이 PE header 에 notepad.exe 파일이 실행되기 위해 필요한 모든 정보가 적혀있습니다.

어떻게 메모리에 적재되고, 어디서부터 실행되어야 하며, 실행에 필요한 DLL 들은 어떤것들이 있고,
필요한 stack/heap 메모리의 크기를 얼마로 할지 등등...


수 많은 정보들이 PE header 에 구조체 형식으로 저장되어 있습니다.

즉, PE File Format 을 공부한다는 것은 PE header 구조체를 공부한다는 것과 같은 말입니다.



Basic Structure


일반적인 PE 파일의 기본 구조입니다. (notepad.exe)


<Fig. 2>

<Fig. 2> 는 notepad.exe 파일이 메모리에 적재(loading 또는 mapping)될 때의 모습을 나타낸 그림입니다.
많은 내용을 함축하고 있는데요, 하나씩 살펴보겠습니다.


  • DOS header 부터 Section header 까지를 PE Header, 그 밑의 Section 들을 합쳐서 PE Body 라고 합니다.

  • 파일에서는 offset 으로, 메모리에서는 VA(Virtual Address) 로 위치를 표현합니다.

  • 파일이 메모리에 로딩되면 모양이 달라집니다. (Section 의 크기, 위치 등)

  • 파일의 내용은 보통 코드(".text" 섹션), 데이타(".data" 섹션), 리소스(".rsrc") 섹션에 나뉘어서 저장됩니다.
    반드시 그런것은 아니며 개발도구(VB/VC++/Delphi/etc)와 빌드 옵션에 따라서
    섹션의 이름, 크기, 개수, 저장내용 등은 틀려집니다. 중요한 것은 섹션이 나뉘어서 저장 된다는 것입니다.

  • Section Header 에 각 Section 에 대한 파일/메모리에서의 크기, 위치, 속성 등이 정의 되어 있습니다.

  • PE Header 의 끝부분과 각 Section 들의 끝에는 NULL padding 이라고 불리우는 영역이 존재합니다.
    컴퓨터에서 파일, 메모리, 네트워크 패킷 등을 처리할 때 효율을 높이기 위해 최소 기본 단위 개념을 사용하는데,
    PE 파일에도 같은 개념이 적용된 것입니다.

  • 파일/메모리에서 섹션의 시작위치는 각 파일/메모리의 최소 기본 단위의 배수에 해당하는 위치여야 하고,
    빈 공간은 NULL 로 채워버립니다. (<Fig. 2> 를 보면 각 섹션의 시작이 이쁘게 딱딱 끊어지는 걸 볼 수 있습니다.)



VA & RVA



VA (Virtual Address) 는 프로세스 가상 메모리의 절대 주소를 말하며,
RVA (Relative Virtual Address) 는 어느 기준위치(ImageBase) 에서부터의 상대 주소를 말합니다.

VA 와 RVA 의 관계는 아래 식과 같습니다.

RVA + ImageBase = VA

PE header 내의 많은 정보는 RVA 형태로 된 것들이 많습니다.
그 이유는 PE 파일(주로 DLL)이 프로세스 가상 메모리의 특정 위치에 로딩되는 순간
이미 그 위치에 다른 PE 파일(DLL) 이 로딩 되어 있을 수 있습니다.

그럴때는 재배치(Relocation) 과정을 통해서 비어 있는 다른 위치에 로딩되어야 하는데,
만약 PE header 정보들이 VA (Virtual Address - 절대주소) 로 되어 있다면 정상적인 엑세스가 이루어지지 않을것입니다.

정보들이 RVA (Relative Virtual Address - 상대주소) 로 되어 있으면 Relocation 이 발생해도
기준위치에 대한 상대주소는 변하지 않기 때문에 아무런 문제없이 원하는 정보에 엑세스 할 수 있을 것입니다.




이어지는 강좌에서 PE Header 구조체를 하나씩 상세히 살펴보도록 하겠습니다.



(continue)



반응형
  1. 이전 댓글 더보기

+ Recent posts